Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Marine dinitrogen (N2) fixation is a globally significant biogeochemical process carried out by a specialized group of prokaryotes (diazotrophs), yet our understanding of their ecology is constantly evolving. Although marine N2 fixation is often ascribed to cyanobacterial diazotrophs, indirect evidence suggests that non-cyanobacterial diazotrophs (NCDs) might also be important. One widely used approach for understanding diazotroph diversity and biogeography is polymerase chain reaction (PCR) amplification of a portion of the nifH gene, which encodes a structural component of the N2-fixing enzyme complex, nitrogenase. An array of bioinformatic tools exists to process nifH amplicon data; however, the lack of standardized practices has hindered cross-study comparisons. This has led to a missed opportunity to more thoroughly assess diazotroph diversity and biogeography, as well as their potential contributions to the marine N cycle. To address these knowledge gaps, a bioinformatic workflow was designed that standardizes the processing of nifH amplicon datasets originating from high-throughput sequencing (HTS). Multiple datasets are efficiently and consistently processed with a specialized DADA2 pipeline to identify amplicon sequence variants (ASVs). A series of customizable post-pipeline stages then detect and discard spurious nifH sequences and annotate the subsequent quality-filtered nifH ASVs using multiple reference databases and classification approaches. This newly developed workflow was used to reprocess nearly all publicly available nifH amplicon HTS datasets from marine studies and to generate a comprehensive nifH ASV database containing 9383 ASVs aggregated from 21 studies that represent the diazotrophic populations in the global ocean. For each sample, the database includes physical and chemical metadata obtained from the Simons Collaborative Marine Atlas Project (CMAP). Here we demonstrate the utility of this database for revealing global biogeographical patterns of prominent diazotroph groups and highlight the influence of sea surface temperature. The workflow and nifH ASV database provide a robust framework for studying marine N2 fixation and diazotrophic diversity captured by nifH amplicon HTS. Future datasets that target understudied ocean regions can be added easily, and users can tune parameters and studies included for their specific focus. The workflow and database are available, respectively, on GitHub (https://github.com/jdmagasin/nifH-ASV-workflow, last access: 21 January 2025; Morando et al., 2024c) and Figshare (https://doi.org/10.6084/m9.figshare.23795943.v2; Morando et al., 2024b).more » « lessFree, publicly-accessible full text available January 1, 2026
-
Kothe, Erika (Ed.)Decades of research on marine N2fixation focused onTrichodesmium, which are generally free-living cyanobacteria, but in recent years the endosymbiotic cyanobacteriumCandidatusAtelocyanobacterium thalassa (UCYN-A) has received increasing attention. However, few studies have shed light on the influence of the host versus the habitat on UCYN-A N2fixation and overall metabolism. Here we compared transcriptomes from natural populations of UCYN-A from oligotrophic open-ocean versus nutrient-rich coastal waters, using a microarray that targets the full genomes of UCYN-A1 and UCYN-A2 and known genes for UCYN-A3. We found that UCYN-A2, usually regarded as adapted to coastal environments, was transcriptionally very active in the open ocean and appeared to be less impacted by habitat change than UCYN-A1. Moreover, for genes with 24 h periodic expression we observed strong but inverse correlations among UCYN-A1, A2, and A3 to oxygen and chlorophyll, which suggests distinct host-symbiont relationships. Across habitats and sublineages, genes for N2fixation and energy production had high transcript levels, and, intriguingly, were among the minority of genes that kept the same schedule of diel expression. This might indicate different regulatory mechanisms for genes that are critical to the symbiosis for the exchange of nitrogen for carbon from the host. Our results underscore the importance of N2fixation in UCYN-A symbioses across habitats, with consequences for community interactions and global biogeochemical cycles.more » « less
-
Abstract The combination of taxa and size classes of phytoplankton that coexist at any location affects the structure of the marine food web and the magnitude of carbon fluxes to the deep ocean. But what controls the patterns of this community structure across environmental gradients remains unclear. Here, we focus on the North East Pacific Transition Zone, a ~ 10° region of latitude straddling warm, nutrient‐poor subtropical and cold, nutrient‐rich subpolar gyres. Data from three cruises to the region revealed intricate patterns of phytoplankton community structure: poleward increases in the number of cell size classes; increasing biomass of picoeukaryotes and diatoms; decreases in diazotrophs andProchlorococcus; and both increases and decreases inSynechococcus. These patterns can only be partially explained by existing theories. Using data, theory, and numerical simulations, we show that the patterns of plankton distributions across the transition zone are the result of gradients in nutrient supply rates, which control a range of complex biotic interactions. We examine how interactions such as size‐specific grazing, multiple trophic strategies, shared grazing between several phytoplankton size classes and heterotrophic bacteria, and competition for multiple resources can individually explain aspects of the observed community structure. However, it is the combination of all these interactions together that is needed to explain the bulk compositional patterns in phytoplankton across the North East Pacific Transition Zone. The synthesis of multiple mechanisms is essential for us to begin to understand the shaping of community structure over large environmental gradients.more » « less
-
Dinitrogen (N2) fixation is carried out by specialized microbes, called diazotrophs, and is a major source of nitrogen supporting primary production in oligotrophic oceans. One of the best-characterized diazotroph habitats is the North Pacific Subtropical Gyre (NPSG), where warm, chronically N-limited surface waters promote year-round N2fixation. At Station ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the NPSG, N2fixation is typically ascribed to conspicuous, filamentous cyanobacterial diazotrophs (TrichodesmiumandRichelia), unicellular free-livingCrocosphaera, and the UCYN-A/haptophyte symbiosis, based on using microscopy and quantitative PCR (qPCR). However, the diazotroph community in this ecosystem is diverse and includes non-cyanobacterial diazotrophs (NCDs). We investigated the diversity, depth distributions, and seasonality of diazotroph communities at Stn. ALOHA using high throughput sequencing (HTS) ofnifHgene fragments from samples collected throughout the euphotic zone (0-175 m) at near-monthly intervals from June 2013 to July 2016. The UCYN-A symbioses andTrichodesmiumsp. consistently had the highest relative abundances and seasonal patterns that corroborated qPCR-based analyses. Other prevalent community members included a newCrocosphaera-like species, and several NCDs affiliated with γ- and δ-proteobacteria. Notably, some of the NCDs appear to be stable components of the community at Stn. ALOHA, having also been reported in prior studies. Depth and temporal patterns in microdiversity within two major diazotroph groups (Trichodesmiumand UCYN-A) suggested that sub-populations are adapted to time- and depth-dependent environmental variation. A network analysis of the upper euphotic (0-75 m) HTS data identified two modules that reflect a diazotroph community structure with seasonal turnover between UCYN-A/Gamma A, andTrichodesmium/Crocosphaera. It also reveals the seasonality of several important cyanobacteria and NCDs about which little is known, including a putative δ-proteobacterial phylotype originally discovered at Stn. ALOHA. Collectively, these results underscore the importance of couplingnifHgene HTS with other molecular techniques to obtain a comprehensive view of diazotroph community composition in the marine environment and reveal several understudied diazotroph groups that may contribute to N2fixation in the NPSG.more » « less
-
Abstract Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.more » « less
-
Abstract Biological nitrogen fixation is a major important source of nitrogen for low-nutrient surface oceanic waters. Nitrogen-fixing (diazotrophic) cyanobacteria are believed to be the primary contributors to this process, but the contribution of non-cyanobacterial diazotrophic organisms in oxygenated surface water, while hypothesized to be important, has yet to be demonstrated. In this study, we used simultaneous15N-dinitrogen and13C-bicarbonate incubations combined with nanoscale secondary ion mass spectrometry analysis to screen tens of thousands of mostly particle-associated, cell-like regions of interest collected from the North Pacific Subtropical Gyre. These dual isotope incubations allow us to distinguish between non-cyanobacterial and cyanobacterial nitrogen-fixing microorganisms and to measure putative cell-specific nitrogen fixation rates. With this approach, we detect nitrogen fixation by putative non-cyanobacterial diazotrophs in the oxygenated surface ocean, which are associated with organic-rich particles (<210 µm size fraction) at two out of seven locations sampled. When present, up to 4.1% of the analyzed particles contain at least one active putative non-cyanobacterial diazotroph. The putative non-cyanobacterial diazotroph nitrogen fixation rates (0.76 ± 1.60 fmol N cell−1d−1) suggest that these organisms are capable of fixing dinitrogen in oxygenated surface water, at least when attached to particles, and may contribute to oceanic nitrogen fixation.more » « less
-
Hatzimanikatis, Vassily (Ed.)Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were thought to be the primary contributors to oceanic N 2 fixation until the discovery of the unusual uncultivated symbiotic cyanobacterium UCYN-A ( Candidatus Atelocyanobacterium thalassa ). UCYN-A has atypical metabolic characteristics lacking the oxygen-evolving photosystem II, the tricarboxylic acid cycle, the carbon-fixation enzyme RuBisCo and de novo biosynthetic pathways for a number of amino acids and nucleotides. Therefore, it is obligately symbiotic with its single-celled haptophyte algal host. UCYN-A receives fixed carbon from its host and returns fixed nitrogen, but further insights into this symbiosis are precluded by both UCYN-A and its host being uncultured. In order to investigate how this syntrophy is coordinated, we reconstructed bottom-up genome-scale metabolic models of UCYN-A and its algal partner to explore possible trophic scenarios, focusing on nitrogen fixation and biomass synthesis. Since both partners are uncultivated and only the genome sequence of UCYN-A is available, we used the phylogenetically related Chrysochromulina tobin as a proxy for the host. Through the use of flux balance analysis (FBA), we determined the minimal set of metabolites and biochemical functions that must be shared between the two organisms to ensure viability and growth. We quantitatively investigated the metabolic characteristics that facilitate daytime N 2 fixation in UCYN-A and possible oxygen-scavenging mechanisms needed to create an anaerobic environment to allow nitrogenase to function. This is the first application of an FBA framework to examine the tight metabolic coupling between uncultivated microbes in marine symbiotic communities and provides a roadmap for future efforts focusing on such specialized systems.more » « less
An official website of the United States government
